Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences
نویسندگان
چکیده
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
منابع مشابه
Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy
In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus a...
متن کاملImpaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure
In rodents, noise exposure can destroy synapses between inner hair cells and auditory 1 nerve fibers (“cochlear synaptopathy”) without causing hair cell loss. Noise-induced 2 cochlear synaptopathy usually leaves cochlear thresholds unaltered, but is associated 3 with long-term reductions in auditory brainstem response (ABR) amplitudes at medium-to4 high sound levels. This pathophysiology has be...
متن کاملAuditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy.
UNLABELLED Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in ...
متن کاملEffects of noise exposure on young adults with normal audiograms I: Electrophysiology
Noise-induced cochlear synaptopathy has been demonstrated in numerous rodent studies. In these animal models, the disorder is characterized by a reduction in amplitude of wave I of the auditory brainstem response (ABR) to high-level stimuli, whereas the response at threshold is unaffected. The aim of the present study was to determine if this disorder is prevalent in young adult humans with nor...
متن کاملEffects of noise exposure on young adults with normal audiograms II: Behavioral measures
An estimate of lifetime noise exposure was used as the primary predictor of performance on a range of behavioral tasks: frequency and intensity difference limens, amplitude modulation detection, interaural phase discrimination, the digit triplet speech test, the co-ordinate response speech measure, an auditory localization task, a musical consonance task and a subjective report of hearing abili...
متن کامل